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Abstract
Deep uncertainty about the costs and resource limits of carbon dioxide removal (CDR) options
challenges the design of robust portfolios. To address this, we here introduce the CDR sustainable
portfolios with endogenous cost model, a mixed-integer linear optimization model for
cost-optimal and time-dependent CDR portfolios including endogenous treatment of technology
cost dynamics. We explore future uncertainty in three key dimensions: realisable mitigation
potentials, cost dynamics, and resource constraints. Our results demonstrate that afforestation and
reforestation, and soil carbon sequestration appear as robust options, deployed regardless of the
removals required. Direct air carbon capture and storage emerges as the most deployed technology
in 2100 at median value (6.7 GtCO2 yr−1), but with the widest range of possible outcomes
(interquartile range from 4 to 8.7 GtCO2 yr−1) depending largely on future renewable energy
capacity and annual geological storage injection rates. Bioenergy with CCS deployment remains
severely constrained by available land, as the median falls from 1.8 to 0.3 GtCO2 yr−1 in
land-constrained scenarios, but gains portfolio share when future energy availability is bounded.
Our simulations also reveal that ocean alkalinisation could become a dominant solution in high
removal scenarios. Evaluating the performance of portfolios beyond economic costs, we also
provide a framework to explore trade-offs across different aspects relevant to planetary boundaries.

1. Introduction

Limiting global warming to well below 2 ◦C, fol-
lowing the Paris Agreement, requires rapid and deep
greenhouse gas emission reductions as well as atmo-
spheric carbon dioxide removal (CDR) [1–4]. CDR
may play a key role to accelerate the timing at
which net-zero emissions are reached, to counter-
balance non-abated emissions that remain after deep
decarbonisation efforts, and to provide net-negative
emissions to compensate for overshooting of climate
targets [5–7].

Removing atmospheric carbon dioxide (CO2)
and storing it from decades to millennia can be
achieved through different methods that differ in

their capture mechanism, storage medium and per-
manence. Often discussed CDR options also have
different levels of readiness, achievable potential,
social acceptance and impacts on ecosystems [8–10].
Competition for physical resources such as land [11],
water, energy and nutrients, related sustainability
constraints, but also diverse associated side effects
[12], novelty, and patterns of deployment [13, 14]
imply that meeting the cumulative amount of CDR
required to limit global warming while hedging for
risks will thus most likely be realised through a port-
folio of CDR options rather than through a single
silver-bullet solution.

The composition of an optimal CDR portfolio
delivering required removals within sustainability
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limits will depend on available resources, techno-
logies and preferences, and will change over time.
However, uncertainty emerging from the nascence
and system complexity of CDR pathways poses signi-
ficant challenges to their integration in climate policy
making processes [9, 15, 16]. A situation of deep
uncertainty exists when experts or stakeholders do not
know or cannot agree on: (i) appropriate conceptual
models that describe relationships among key driving
forces in a system, (ii) the probability distributions
used to represent uncertainty about key variables and
parameters, and/or (iii) how toweigh and value desir-
able alternative outcomes [17].

For the case of CDR pathways, the substant-
ive multi-gigatonne scales and rates of diffusion of
CDR implied in climate scenarios [18] have not
been echoed neither by the climate change mitiga-
tion strategies of countries [19] nor in the private
innovation sphere [20]. The upscaling of CDR is also
contingent on a plethora of techno-economic, envir-
onmental, and socio-political, legal and ethical uncer-
tainties, including but not limited to: the durability
of the sequestered carbon under a changing climate
[21, 22], the socio-political, legal and ethical chal-
lenges to CDR deployment arising due to overlap-
ping systems [23, 24], or how to monitor, report and
verify removals [25]. These pose substantial limita-
tions on what can be known about policy-relevant
questions regarding the deployment of CDR options,
which thus represents a clear case of deep uncertainty.

CDR technologies and practices have been
explored mostly in either technology-specific stud-
ies or integrated assessment modelling (IAM), which
often rely on a limited set of CDR options [26, 27],
with the notable exception of two recent studies that
each use an IAM to evaluate the implications and
trade-offs of deploying over 4 CDR methods [28, 29]
(supplementary information (SI) table S1). Previous
literature also has attempted to assess CDR portfo-
lios through a multi-criteria decision analysis [30,
31] and through cost-optimisation methods [32–34],
and only a few studies attempt to explicitly consider
uncertainty in CDR deployment [35, 36]. What is
missing is a systematic exploration of the uncertainty
pervading CDR deployment and the extent to which
it shapes the composition of an optimal CDR portfo-
lio that sustainably meets climate targets.

Previous literature has also principally focused on
the potential cost reductions achieved through tech-
nological learning [37–39], while increases in the cost
of deploying CDR due to adverse sustainability con-
sequences or societal factors such as public opposition
have remained largely unexplored.

In this study, and drawing from tools for decision-
making under deep uncertainty (DMDU), we address
these issues by exploring how cost-optimal portfo-
lios of CDR options vary when considering uncer-
tainty about CDR cost dynamics, realisable mitiga-
tion potentials and the state of planetary boundaries

[40] as a framework for identifying earth systems pro-
cesses relevant to CDR. We do this by providing both
a framework with which to characterise the variation
of removal costs with deployment and a computa-
tional experimentation approach to characterise CDR
deployment pathways under deep uncertainty. We
developed the CDR sustainable portfolios with endo-
genous cost (CDR-SPEC) model to identify optimal
CDR portfolios across a large set of plausible futures
and compare their composition and performance to
present the merits of different strategies. The result-
ing database contains detailed information about how
varying combinations of uncertainty conditions trig-
ger the implementation of different CDR portfolios,
thus producing valuable data for identifying near-
term trade-offs and developing long-term adaptive
strategies.

2. Methods

2.1. Cost dynamics of CDR deployment
Experience curves relate the number of units pro-
duced or capacity installed of a given product (i.e. the
gathered ‘experience’) to the efficiency of that pro-
duction. They have been used to describe the dynam-
ics of technological cost with deployment: salient
examples are the cost reductions achieved with the
deployment of renewable energy technologies [41],
or the cost increases experienced by nuclear power
plants [42–44]. We provide a first-of-a-kind concep-
tualisation of different drivers of both cost increases
and reductions based on the literature focusing on
cost dynamics (table S2).

Projecting future costs of CDR methods, a key
metric for policy-making, is nevertheless challenging
due to the early development phase of novel CDR
technologies and the large scales of removals required,
potentially leading to a new land-use paradigm with
adverse sustainability consequences. Previously, the
amount of capacity deployed for a CDR technology
has been used to characterise the cost dynamics of
CDRmethods (e.g. see [37–39] for DACCS). We gen-
eralise this approach to evaluate both cost reductions
and increases achieved from the deployment of CDR
capacity. ‘Experience’ here refers to cumulative capa-
city installed and can therefore only increase with
time, while ‘installed capacity’ can decrease at the end
of its operational period.

Experience rates (ERs) and the shape of the
experience curve vary between different technolo-
gies (refer to SI section 3). To characterise CDR
cost dynamics, we here use the one-factor experi-
ence curve model to describe an exponential correl-
ation between the unit cost of investing in CDR capa-
city SC ($/tCO2·yr−1), and the cumulative experi-
ence achieved z (tCO2·yr−1). For each doubling of
cumulative experience, investment unit costs reduce
or increase by a factor ER for positive and negative
ERs, respectively.
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2.2. Uncertainty characterisation and data
collection
Complexity inherent in dynamic, coupled social-
ecological systems demands thinking about future
uncertainty in terms of multiple plausible futures,
rather than probability distributions [45, 46].
Plausible climate futures can be defined as ‘occur-
able’ under internally consistent assumptions5 [47,
48], with plausibility being the guiding principle in
the ‘what-if ’ logic of climate scenarios [7, 49].

We identified parameters that represent key
uncertainties in CDR pathways based on previous
research that focuses on potential adverse sustainab-
ility and socio-economic consequences of CDR [9,
12, 50]. To define many future plausible states of the
world (SOW), we use a Latin Hypercube to sample
uniformly (N = 3001) across ranges within the 26
relevant uncertain parameters (supplementary table
S15). These include the required cumulative (2020–
2100) removals, the limits to land available and geolo-
gical storage annual injection for CDR, the year from
which energy becomes available for CDR (see sup-
plementary table S3 and figure S4 for definition), the
ER and maximum cumulative capacity of each of the
8 CDR options modelled, and the land and energy
requirements of certain CDR options.

The eight CDRmethods considered in this assess-
ment include afforestation and reforestation (A/R),
soil carbon sequestration (SCS), bioenergy with car-
bon capture and storage (BECCS), biochar (BC), dir-
ect air carbon capture and storage (DACCS), dir-
ect ocean carbon capture and storage (DOCCS),
enhanced rock weathering (EW), ocean alkalinisation
(OA). A summary of the parameterization of CDR
methods is included in figure 1.

2.3. Model formulation
We here define the CDR-SPEC model, a mixed-
integer linear optimization model for cost-optimal
and time-dependent global CDR portfolios includ-
ing endogenous treatment of technology cost dynam-
ics. The model formulation is inspired by previous
literature on energy system modelling that incor-
porates endogenous learning effects [52–54]. It min-
imises cumulative discounted costs for the entire
time period (2020–2100) across all CDR methods.
A discount rate of 3% was assumed [55]. Three cat-
egories of constraints define the model: system con-
straints (defining capacity balances), endogenous cost
constraints (describe cost dynamics with cumulative

5 As pointed out by Jewell & Cherp [47], this diverges from a recent
suggestion that defines plausible futures as those which empirical
evidence about recent trends in key drivers and enabling conditions
point to [68, 69]. While we acknowledge that assessing the social
plausibility of climate futures is key for fostering climate action, we
depart from this conceptualisation of plausibility because we aim
to systematically explore the option space without ranking which
future state of the world is more or less plausible to be realised.

deployed experience) and resource constraints (set-
ting required removals and land, energy and geolo-
gical storage limits)—see SI for detailed list of relev-
ant assumptions and equations defining the model.
Specifically on capacity balances, the model assumes
that any capacity installed has a method-specific
operational period during which it removes CO2 that
remains permanently stored (table S4). This strong
assumption about storage durability neglects import-
ant permanence differences between CDR methods
[56, 57] as well as the potential impacts of reversib-
ility on tackling global warming and the amount of
CDR required [58].

We designed the CDR-SPEC model to identify
combinations of CDR methods that meet removal
requirements within selected sustainability con-
straints under a set of assumptions regarding CDR
deployment dynamics and views of the world. As
such, it does not seek to represent complex interac-
tions between the economy, society and the environ-
ment and cannot be compared with the results of a
large-scale IAM. Despite their advantageous extens-
ive coverage of physical and social systems, the large
system complexity of IAMs challenges the traceability
of implicit assumptions and the systematic evaluation
of a plethora of plausible futures. The strength of our
model is that it provides a framework which allows
for the systematic exploration of a range of assump-
tions about future developments in a flexible and
transparent fashion.

3. Results

Across the plausible future SOW evaluated, 8% were
on average deemed infeasible by the model (see
section 4 in SI). To better understand drivers of infeas-
ibilities, machine learning techniques were used to
explore the parameters that better explain whether a
solution has been found for a future or not. These
are, in order of relative importance: the amount of
removals required, themaximumpotential of BC, the
limit to land available, and the starting year at which
energy becomes available for CDR (figure S6 in SI).

3.1. Composition of CDR portfolios
Our results show that achieving high removals while
respecting sustainability constraints requires a lar-
ger diversity of CDR options than currently explored
(figure 1). This is especially true for very high removal
requirements (>900 GtCO2 by 2100), where all port-
folios require on average the deployment ofmore than
six different CDR options (see also figure 6(b).

Diversification is however not only required
across technologies, but also across temporal scales:
deploying A/R and SCS, followed by DACCS, BECCS
and BC, is a robust short- to medium-term strategy
(figure 2(a), see supplementary figure S8 for capa-
city installed by 2075). Despite being deployed in
most SOW, the amount of CDR installed for these

3
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Figure 1. Overview of assessed CDR options, split into conventional and novel methods, as per characterisation in Smith et al
[51]. Parameters with ranges rather than single values are shown in square brackets. Referenced information and descriptions of
CDR options, as well as further details on the CDR selection criteria and the choice of parameters and values, can be found in
supplementary information section 5 and tables S3–S14.

options greatly differs depending on future uncer-
tainties. For instance, looking at BECCS deployment,
it can be observed that the median capacity installed
by 2100 is 1.8 GtCO2 yr−1 despite the maximum
available capacity being uniformly sampled from 0.7
to 12.6 GtCO2 yr−1 (figure 1). This shows that even
if this CDR option is deployed across many futures
(figure S7), it is not often deployed to the large scales
available in the modelling framework.

DACCS emerges as the dominant CDR option in
2100 (figure 2(b)), with a median of 6.7 GtCO2 yr−1

maximumdeployed capacity, but with awide range of
possible outcomes. It is followed, by large margin, by
OA and by A/R, which is in turn amore robust option
exhibiting a narrower interquartile range of deployed
capacity. The most robust option is SCS.

Exploring the composition of portfolios that are
repeated across futures for the two time periods
shown in figure 2, we observe that the six most
recurrent portfolios in 2050 rely on large amounts
of BECCS and A/R and SCS, and to a lower extent
on DACCS (figure S11). These recurrent short-term
portfolios cover the whole range of possibly required
removals (400–1100 GtCO2 by 2100). This indicates
that the short-term deployment of these four options
would leave the door open to multiple possibilities
and minimise the risk of not meeting future climate
targets. However, this is not the case for long-term
portfolios: the most recurrently repeated portfolios
mainly cover the lower end of the removals range

(400–900 GtCO2), highlighting that optimal portfo-
lios for 2100 highly depend on how key uncertainties
unfold.

3.2. Drivers of adoption of CDR capacity
To better understand the drivers of adoption or barri-
ers to deployment of eachCDRoption, we explore the
uncertainty parameters that have the greatest impact
on the maximum capacity installed per CDR option
across futures (figure 3). In general, for most options,
their own maximum available potential (i.e. the
largest capacity that can be deployed in a future) is
the key limiting constraint, with DACCS, EW and
DOCCS being exceptions to this trend. The annual
limit to geological injection dominates for DACCS,
while for the case of EW, this can be explained by
the narrow range of the sampled achievable poten-
tial (i.e. 2–4 GtCO2 yr−1, see figure 1), with variation
in other factors having a larger relative importance.
However, as DOCCS is only deployed in 2% of the
futures (figure S7), several features score highly for
this CDR option, resulting in no clear and reliable
trend that can be identified for DOCCS.

In relative terms, the maximum available poten-
tial is more influential for some CDR than for oth-
ers. For instance, modelled as requiring no additional
energy or land, SCS deployment is almost exclus-
ively driven by the maximum available capacity, with
increasing costs with deployment (i.e. negative ER)
not having a substantial effect in relative terms.

4
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Figure 2. Distribution of maximum deployed capacity per CDR option for two different time periods, 2050 (a) and 2100 (b).
x-axis: maximum GtCO2 yr−1 installed per future in period of interest; y-axis: outcome distribution across N = 2758 solved
futures. Vertical lines within distributions represent quartile ranges, x-axis scale is the same for both time periods. Abbreviations:
afforestation and reforestation (A/R), soil carbon sequestration (SCS), bioenergy with carbon capture and storage (BECCS),
biochar (BC), direct air carbon capture and storage (DACCS), direct ocean carbon capture and storage (DOCCS), enhanced rock
weathering (EW), ocean alkalinisation (OA).

Figure 3. Feature scoring of maximum deployed capacity per CDR option. This machine learning technique identifies the
uncertainty parameters (i.e. model inputs, in rows) that have the greatest impact on the maximum capacity deployed per CDR
option (i.e. model outputs, in each column). Cells are coloured from white to dark blue, showing low-to-high importance. Values
shown in percentages (%), only values above 2% are shown for better readability.

The amount of cumulative removals required
across the entire time period is similarly a key driv-
ing factor of adoption. CDRoptions that are deployed
in almost all futures (i.e. A/R, SCS, DACCS) are
nevertheless relatively less affected by the amount
of required removals, whereas EW, BC and OA

are deployed at a greater extent depending on the
removal target. The latter can be interpreted as these
options being deployed to bridge the gap between
the baseline removals delivered by robust near-term
CDR options (figure 2(a)) and required removals.
BECCS however does not follow the same trend, as
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its deployment exhibits a strong relationship with
required removals, despite being deployed in 75%
of futures (see figure S7 in SI). This indicates that
the magnitude of deployed capacity, and not whether
BECCS is deployed or not, is sensitive to how much
CDR is needed. Removals required is also the only dis-
tinctive feature scoring relatively high for DOCCS.

Regarding cost dynamics, ERs play a larger role
in the deployment of certain CDR options (e.g. OA,
BECCS, EW, and to a lesser extent DACCS) than for
others. Similarly as observed for maximum achiev-
able potential, EW’s capacity is not only driven by its
own ER but also how costly other technologies are,
underlining the importance of a portfolio approach.
It is worth noting that these results emphasise the rel-
ative importance of different parameters contingent
on how CDR options are characterised and paramet-
erized in our modelling framework.

In terms of resource use, land constraints more
substantially impact A/R’s and BECCS’s capacity rel-
ative to their potential increasing costs with deploy-
ment. Geological injection appears more limiting for
DACCS than for BECCS, for which land limits might
play a larger role. Interestingly, stringent limits to geo-
logical storage also drive EW and OA deployment.
Despite being energy-intensive CDRoptions, EWand
OA deployment is not substantially related to the year
(and hence the amount) at which energy becomes
available for CDR. This might be a consequence of
EW and OA being CDR options that are in general
deployed later in the century, rather than in the short-
term as for DACCS.

3.3. Scenarios on resource constraints and cost
dynamics
The analysis of drivers of adoption and barriers to
deployment of CDR options (figure 3 above) revealed
that uncertain parameters have different effects on
the deployment of individual CDR options, but does
not provide insights into the direction of such effect,
the portfolio composition, or portfolio costs and
resources used. To address this, we explore the effect
of high-scoring uncertainty parameters (figure 3)
on portfolios by identifying futures that lie within
a certain range of such parameters, and comparing
the composition and performance of CDR portfo-
lios between these futures of interest and all futures
solved. To expand on the analysis of resource use,
we compute water, nitrogen and phosphorus used by
each portfolio frommodel outputs (see table S5 in the
SI for values used).

Focusing on parameters that define model con-
straints (figure 4), it can be observed that in futures
with low land available for CDR (figures 4(a) and
(b)), A/R and BECCS are deployed to substantially
lower capacity levels relative to the distribution across
all futures. This however does not compromise the

amount of removals delivered as there is a substan-
tial increase in EW and OA deployment. A delay
in the year at which energy becomes available for
CDR (figures 4(c) and (d)) does however have an
impact on the amount of land, as well as water, nitro-
gen and phosphorus used, translating into a higher
median land demand relative to all futures. Under
energy constraints, DACCS is the CDR option whose
distribution is most skewed towards lower levels of
installed capacity, as opposed to BECCS, which is
more often deployed at greater scales. Futures in
which the annual rate of geological storage injection is
lowest (figures 4(e) and (f)) rely on substantiallymore
OA, EWandA/R, while BECCS butmore importantly
DACCS capacity is constrained. Energy and land used
for CDR are also reduced at median.

Cost dynamics are highly relevant. The ER affects
the deployment of many CDR options. In particu-
lar, EW and BECCS are deployed to greater extents
whenOA becomesmore costly with capacity installed
(figures 5(a) and (b)). However, the effect of BECCS’s
ER is not as pervasive as OA’s on other CDR options
(figures 5(c) and (d)): only A/R, and to a lesser extent
EW, are deployed to greater capacity levels. A neg-
ative ER for BECCS could represent a world where
competition for land usage and negative environ-
mental externalities result in increasing investment
costs of BECCS with deployment. This is mirrored in
the modelling results as futures in which BECCS’s ER
is between −7.5% and −15% effectively minimizing
land for CDR.

Futures with a large cumulative removal tar-
get (i.e. above 825 GtCO2, figures 6(a) and (b))
intuitively require more resources and are the most
costly. Costs however do not increase linearly with
removals, as the median across futures follows a con-
vex curve with increasing removals (figure S9 in
SI). High removals skew the distribution of all CDR
options towards higher capacity deployed, except for
SCS and DOCCS, for which the median remains
unchanged, and for DACCS, where less capacity is
deployed. The latter might be explained by the need
to deploy CDR options alternative to DACCS to meet
the extra removals required, which cannot exclusively
be delivered by increasing DACCS due to resource
constraints. This would reduce the energy and eco-
nomic resources available for DACCS, while decreas-
ing the costs of alternative technologies due to gain-
ing of experience, making DACCS a less competitive
option.

CDR portfolios’ composition and performance
can also be assessed for ranges of interest of output
metrics. For instance, only<1% of the futures solved
are within the upper 50% range of portfolio costs
(i.e. from 36 to 67 billion USD—see figures 6(c) and
(d)). These high cost portfolios deliver a high amount
of cumulative removals and involve very large OA,
EW and BECCS deployment, while levels of DACCS
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Figure 4. Variation of performance of key metrics (a), (c), (e) and portfolio composition (b), (d), (f) for futures of interest defined
by model constraints. The parameters of interest explored are (a), (b), the limit to land available for CDR, (c), (d) the year at
which energy becomes available for CDR, and (e), (f) the annual limit to geological storage injection. The ranges defining futures
of interest are shown in blue the top corner of panels (a), (c), and (e), and the number of futures in each group (n) are indicated
in square brackets. In panel (a), (c), (e), metrics are either model constraints (incl. removals, land, energy), model objective
(costs) or post-modelling metrics (incl. water, nitrogen, phosphorous). For each metric, bars represent the change in median of
futures of interest relative to the median of the entire ensemble (N = 2758)—refer to supplementary figure S12 for full statistics.

and SCS are reduced. It can also be observed that
there’s a more substantial DOCCS deployment: 70%
of the futures where DOCCS deployment is above
1 GtCO2 are within the most expensive (i.e. outliers
in figure 6(d)) portfolios. Land used is not comprom-
ised, but these portfolios require significantly larger
amounts of water, nitrogen and phosphorous.

4. Discussion

This study highlights the relevance of comprehens-
ively considering uncertainty in decision-making
contexts involving the deployment CDRwhere future
cost dynamics and resource availability cannot be pre-
dicted with high confidence. Far from aiming to fore-
cast future CDR developments, this analysis should
be interpreted as a framework for considering how
uncertainty impacts CDR deployment and policy-
relevant performance metrics such as costs, resource
use and delivery of CDR. It provides a transparent
framework useful to devise robust net-zero and net-
negative emissions strategies in the light of uncer-
tainty and to assess trade-offs arising across them.

Data mining algorithms have been used to exam-
ine which (combinations of) uncertainties generate

vulnerability in the system. The identified key uncer-
tainties can then be used to develop policy-relevant
narrative scenarios to inform implementation and
monitoring efforts or new policy deliberations. This
analysis can thus be expanded to monitor signposts
and assumptions about future CDR developments:
the actual values of key uncertain factors can be
measured as the future unfolds, and the preferred
strategy can be adapted depending on the arrival of
new information. For instance, if uncertainty around
the environmental effects or removal effectiveness of
OA’s deployment is high, and therefore OA costs are
high (figures 5(a) and (b)), this analysis suggests that
greater efforts could be directed towards EW, BECCS,
and DACCS deployment.

Considering wide ranges in key uncertain para-
meters also allows to draw different narratives regard-
ing cooperation on global commons. As an example,
low land availability for CDR could represent a world
where conflicts across countries challenge the large-
scale deployment of land-intensive CDR. This process
of characterising scenarios computationally through
empirical data after the future option space has been
evaluated—rather than defining them a priori in the
first stages of the analysis—constitutes a fundamental

7
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Figure 5. Variation of performance of key metrics (a), (c) and portfolio composition (b), (d) for futures of interest defined by
experience rates. The parameters of interest explored are (a), (b) the experience rate of OA, (c), (d) the experience rate of
BECCS—refer to supplementary figure S13 for full statistics.

difference between DMDU methods and traditional
decision-making support tools [59].

However, despite this flexibility regarding narrat-
ive interpretations, a limitation of this analysis resides
in the aggregation of resources and decision power in
the modelling framework: a distinction is not made
between different types of land, sources of funding,
CO2 markets or actors that will deploy CDR follow-
ing each their own objectives. The modelling frame-
work could also be extended to not only consider
competition for resources across CDR options, but
also capture the possible synergies arising between
different CDR methods, such as the deployment
of a CCS infrastructure simultaneously benefitting
BECCS, DACCS and DOCCS, or the use of energy
produced through BECCS or BC for energy-intensive
CDR.

Additionally, 8 key parameters have been used
to represent uncertainty in CDR deployment, but
alternative parameters that could also be considered
include the permanence of the sequestered CO2

[58, 60], the sensitivity of C drawdown effectiveness

to combat climate change [61–63], the operational
costs of CDR [64], and the carbon price [65], among
others. We also conducted a sensitivity analysis to
evaluate the impacts of varying discount rate and
operational period of capacity at the first time period
(table S16, figures S15 and S16 in SI) on the compos-
ition of CDR portfolios. This reveals that the amount
of capacity deployed of OA, EW and BC is highly
sensitive to the assumed discount rate (figure S15),
while onlyOA and EW’s deployed capacity is substan-
tially affected by varying assumptions regarding oper-
ational period (figure S16).

Beyond parametric uncertainty, which is exogen-
ous to the modelling framework, alternative func-
tional forms for experience curves (e.g. sigmoid
rather than exponential [66]) or energy availabil-
ity (e.g. exponential rather than logistic), as well as
alternative objective functions such as minimising for
CDR required or resources used for different regions,
represent fundamental knowledge gaps that could,
in future works, address structural uncertainty endo-
genous to the modelling process.

8
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Figure 6. Variation of performance of key metrics (a), (c) and portfolio composition (b), (d) for futures of interest defined by
removal requirements (a), (b) and portfolio costs (c), (d). The right-hand side panels look at portfolios with high cumulative
discounted cost—refer to supplementary figure S14 for full statistics.

5. Concluding remarks

By developing a transparent computational experi-
mentation approach to characterising CDR deploy-
ment pathways and cost dynamics, our work provides
a methodology for exploring the effect of uncertainty
on the composition and performance of CDR port-
folios. Considering uncertainty in CDR deployment
reveals that cost-minimal CDR portfolios are highly
dependent on how the future unfolds. On a few occa-
sions, no feasible solution can be found for meeting
removal targets within environmental constraints.

For the futures where a cost-optimal strategy is
identified, our findings suggest that a robust port-
folio of climate change mitigation strategies should
include a diversified set of, on average, over six differ-
ent CDR options deployed throughout the century—
with diversification benefits realised not only across
technologies, but also time. Based on our model-
ling assumptions, robust short-term options include
A/R and SCS, and are followed by DACCS, BECCS
and BC. Despite BECCS being present in most SOW
modelled, its distribution is skewed towards lower

amounts of deployed capacity. Our results indicate
that DACCS is deployed to substantially lower extents
when geological storage is limited, and to lesser extent
when removal requirements are high due to resource
constraints reducing its competitiveness. DOCCS is
principally scaled to giga-ton levels in futures with
high removals and high cost portfolios.

We also show that assumptions about cost
dynamics and resource constraints play distinct roles
in the deployment of different CDR methods: ERs
have a greater impact on the deployment of cer-
tain CDR options such as OA, BECCS, EW, and to a
lesser extent DACCS. Low geological storage injection
rates are associated with substantially lower energy
requirements due to constrained DACCS deploy-
ment. Energy use is however not compromised under
stringent land availability limits, while portfolios with
low energy requirements need on average more land,
water, nitrogen and phosphorus, and are associated
with higher levels of BECCS deployment. Our study
also highlights the potential complementarity or sub-
stitutability arising between CDR approaches, some-
times deployed as alternatives to other options when

9
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these are relatively too costly or environmentally con-
strained. Key interactions include a greater deploy-
ment of EW, DACCS and BECCS when OA becomes
more costly with experience, as well as an increase
in EW in futures with low rates of geological storage
injection.
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